Nuclear quadrupole interactions of the ${ }^{87} \mathrm{Rb}$ nuclear magnetic resonance in a nonlinear optical crystal $\mathrm{RbTiOAsO}_{4}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2002 J. Phys.: Condens. Matter 1413743
(http://iopscience.iop.org/0953-8984/14/50/303)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.97
The article was downloaded on 18/05/2010 at 19:21

Please note that terms and conditions apply.

Nuclear quadrupole interactions of the ${ }^{87} \mathbf{R b}$ nuclear magnetic resonance in a nonlinear optical crystal $\mathrm{RbTiOAsO}_{4}$

Ae Ran Lim ${ }^{1,3}$, Hee Won Shin ${ }^{1}$, Sooseok Lee ${ }^{2}$ and Choon Sup Yoon ${ }^{2}$
${ }^{1}$ Department of Physics, Jeonju University, Jeonju 560-759, Korea
${ }^{2}$ Department of Physics, KAIST, Daeduck Science Town, Taejeon 305-701, Korea
E-mail: aeranlim@hanmail.net and ARL29@cornell.edu

Received 13 September 2002
Published 6 December 2002
Online at stacks.iop.org/JPhysCM/14/13743

Abstract

The ${ }^{87} \mathrm{Rb}$ nuclear magnetic resonance (NMR) in a $\mathrm{RbTiOAsO}_{4}$ single crystal was investigated by employing a Bruker FT NMR spectrometer. Instead of one central line, four central lines were obtained. There were two sets of crystallographically inequivalent Rb^{+}ions: $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$. Two resonance lines in the $\mathrm{Rb}(1)$ nucleus and two resonance lines in the $\mathrm{Rb}(2)$ nucleus were caused by magnetically inequivalent sites. The angular dependences led to different values for the quadrupole coupling constant and the asymmetry parameter: $e^{2} q Q / h=19.26 \pm 0.03 \mathrm{MHz}$ and $\eta=0.59 \pm 0.02$ for the $\mathrm{Rb}(1)$ ion, and $e^{2} q Q / h=23.58 \pm 0.07 \mathrm{MHz}$ and $\eta=0.44 \pm 0.05$ for the $\mathrm{Rb}(2)$ ion. The EFG tensors of $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ were non-axially symmetric, and the orientations of their principal axes did not coincide. The $\mathrm{Rb}(1)$ ions, which are surrounded by nine oxygen atoms, are low in symmetry while the $\operatorname{Rb}(2)$ ions, which are surrounded by nine oxygen atoms, show high symmetry.

1. Introduction

Quasi-phase matching (QPM) provides an efficient way of effecting nonlinear frequency conversion and has a number of advantages over conventional birefringence phase matching because QPM not only can utilize the largest component of the second-order nonlinear susceptibility tensor but also can circumvent the walk-off effect [1]. A QPM structure can be realized by fabricating periodic domain inversion in ferroelectric nonlinear optical crystals, such as LiNbO_{3} [2], KTiOPO_{4} [3], and $\mathrm{RbTiOAsO}_{4}$ [4]. Although LiNbO_{3} has a large effective nonlinear optical coefficient of $17 \mathrm{pm} \mathrm{V}^{-1}$, it has to be used at elevated temperatures because of the photorefractive effect at room temperature. KTiOPO_{4} and $\mathrm{RbTiOAsO}_{4}$ are free of the photorefractive effect and can be poled at thicknesses as large as 3 mm . However, since KTiOPO_{4} has a

[^0]large electrical conductivity, electrical poling for domain inversion should be done at low temperature [3] or with K^{+}ions replaced by Rb^{+}ions [5] to reduce the conductivity. $\mathrm{RbTiOAsO}_{4}$ is similar in structural and nonlinear optical properties to KTiOPO_{4}, but has an electrical conductively five orders of magnitude smaller than that of KTiOPO_{4} [6] along the polar axis. $\mathrm{RbTiOAsO}_{4}$ is, therefore, regarded as a promising material for QPM applications. Recently, Kaminsky et al [7] reported the measurement of optical rotation in $\mathrm{RbTiOAsO}_{4}$ crystal.

The $\mathrm{RbTiOAsO}_{4}$ crystal is a positive biaxial ferroelectric crystal belonging to the orthorhombic $\mathrm{Pna}_{1}(\mathrm{~mm} 2)$ class [8], and its polar axis is parallel to its c-axis. RbTiOAsO ${ }_{4}$ possesses excellent nonlinear optical properties, such as a wide transparency range in the IR region (0.35-5.3 $\mu \mathrm{m}$) [9] and large second-order nonlinear optical coefficients ($d_{33}=$ $15.8 \mathrm{pm} \mathrm{V}^{-1}, d_{32}=3.8 \mathrm{pm} \mathrm{V}^{-1}$, and $d_{31}=2.3 \mathrm{pm} \mathrm{V}^{-1}$) [10]. Although its physical properties, such as its piezoelectric, acoustic [11], and dielectric properties [6], have been reported, no literature report has yet presented nuclear magnetic studies of $\mathrm{RbTiOAsO}_{4}$.

In this paper, based on an investigation of the ${ }^{87} \mathrm{Rb}$ nuclear magnetic resonance (NMR) in a $\mathrm{RbTiOAsO}_{4}$ single crystal, we discuss the local structure around the rubidium atoms. The quadrupole coupling constant, the asymmetry parameter, and the directions of the principal axes of the electric field gradient (EFG) tensor of ${ }^{87} \mathrm{Rb}(I=3 / 2)$ were determined at room temperature. These results show that the crystallographically inequivalent $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ sites, which are surrounded by nine oxygen atoms each, can be clearly distinguished by means of the ${ }^{87} \mathrm{Rb}$ NMR.

2. Crystal structure

The structure for rubidium titanyl arsenate, $\mathrm{RbTiOAsO}_{4}$, is orthorhombic with space group is $P n a 2_{1}(m m 2)$ [8]. There is no phase transition between room temperature and 9.6 K . The unit-cell parameters are $a=13.218 \AA, b=6.6500 \AA, c=10.761 \AA$, and $Z=8$ at 9.6 K , and $a=13.261 \AA, b=6.6791 \AA, c=10.769 \AA$, and $Z=8$ at 295 K [8]. The projection of the structure of $\mathrm{RbTiOAsO}_{4}$ along [010] is shown in figure 1 [4]. As the temperature was lowered from 295 to 9.6 K , the Rb atoms moved along the c-axis in the direction of the polarization vector, while no significant change was noted for the Ti-O-As network. There are two types of crystallographically different $\operatorname{Rb}(1)$ and $\mathrm{Rb}(2)$, and $\mathrm{As}(1)$ and $\mathrm{As}(2)$ ions in the cell. The Rb^{+}and As^{+}ions are surrounded by oxygen atoms. Both $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ are located in channels along the c-axis and are coordinated by nine O atoms. The $\mathrm{Rb}-\mathrm{O}$ bonds are longer in the positive than in the negative c-direction [12]. The $\mathrm{Rb}-\mathrm{O}$ distances for $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ are given in table 1 [13].

3. Experimental details

Single crystals of $\mathrm{RbTiOAsO}_{4}$ were grown by using the high-temperature solution growth method with a [001] seed placed at the surface of the solution [6]. The starting materials for the synthesis of RbTiOAsO 4 and a flux, $\mathrm{Rb}_{5} \mathrm{As}_{3} \mathrm{O}_{10}$, were $\mathrm{As}_{2} \mathrm{O}_{5}$ (99.0% purity), TiO_{2} (99.9% purity), and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ (99% purity). The weight ratio of $\mathrm{RbTiOAsO}_{4}$ to the flux in solution was 3:10. $\mathrm{RbTiOAsO}_{4}$ crystals, $18 \times 31 \times 24 \mathrm{~mm}^{3}$ in size and of excellent quality, were grown for a period of 25 days. The samples were cut and polished perpendicular to the three principal axes.

The NMR signals from ${ }^{87} \mathrm{Rb}$ in the RbTiOAsO 4 single crystals were measured using the Bruker DSX 400 FT NMR spectrometer at the Korea Basic Science Institute. The static magnetic field was 9.4 T, and the central radio-frequency was set at $\omega_{0} / 2 \pi=130.930 \mathrm{MHz}$. The angular variations of the spectra were obtained by rotating the crystal about three mutually

Figure 1. $\mathrm{RbTiOAsO}_{4}$ crystal structure viewed along the [010] direction.
Table 1. $\mathrm{Rb}-\mathrm{O}$ bond lengths for $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ in $\mathrm{RbTiOAsO}_{4}$.

Bond type	Bond length (\AA)	Bond type	Bond length (\AA)
$\mathrm{Rb}(1)-\mathrm{O}$	3.145	$\mathrm{Rb}(2)-\mathrm{O}$	2.753
	2.808		3.109
	2.765	3.196	
	3.297	3.030	
	2.935		2.885
	3.017	3.183	
	3.390		2.910
	3.307		3.002
	2.811		3.192
Average $\mathrm{Rb}(1)-\mathrm{O}$ length: 3.053	Average $\mathrm{Rb}(2)-\mathrm{O}$ length: 3.029		

perpendicular axes, which in turn were normal to the three mutually perpendicular planes of the crystal. A special probe head was constructed for the cryomagnet system, which rendered it possible to rotate the sample around an axis perpendicular to the static magnetic field \boldsymbol{B}_{0} and to incline the complete probe head by angles up to about 5° with respect to the axis of the cryomagnet. Thus, the crystal orientation could be adjusted very sensitively with respect to the static magnetic field.

4. Experimental results and analysis

The NMR spectra of the ${ }^{87} \mathrm{Rb}$ nucleus were analysed using the usual Hamiltonian,

$$
\begin{equation*}
H=H_{Z}+H_{Q} \tag{1}
\end{equation*}
$$

where H_{Z} is the nuclear Zeeman term and H_{Q} describes the nuclear quadrupole interaction of the ${ }^{87} \mathrm{Rb}$ nucleus, which has a nuclear spin $I=3 / 2$. The quadrupole Hamiltonian in the principal axis system of the EFG tensor is described by $[14,15]$

$$
\begin{aligned}
H=-\gamma \hbar \boldsymbol{B}_{0} & \cdot(1+\boldsymbol{\alpha}) \cdot \boldsymbol{I}+\left[e^{2} q Q / 4 I(2 I-1)\right]\left[\frac{1}{2}\left\{3 I_{z}^{2}-I(I+1)\right\}\left(3 \cos ^{2} \theta-1\right)\right. \\
& \left.+\eta \sin ^{2} \theta \cos 2 \varphi\right)+\frac{1}{4}\left(I_{+}^{2}+I_{-}^{2}\right)\left\{3 \sin ^{2} \theta+\eta \cos 2 \varphi\left(1+\cos ^{2} \theta\right)\right\} \\
& +\frac{1}{4}\left\{\left(I_{+}+I_{-}\right) I_{z}+I_{z}\left(I_{+}+I_{-}\right)\right\}(6 \sin \theta \cos \theta-\eta \sin 2 \theta \cos 2 \varphi)
\end{aligned}
$$

Figure 2. The NMR spectrum of ${ }^{87} \mathrm{Rb}$ in the $\mathrm{RbTiOAsO}_{4}$ crystal. The static magnetic field \boldsymbol{B}_{0} is parallel to the $\left(b+13^{\circ}\right)$-axis in the $a b$-plane.

$$
\begin{align*}
& -(\eta / 2 \mathrm{i})\left(I_{+}^{2}-I_{-}^{2}\right) \cos \theta \sin 2 \varphi+\eta / 2 \mathrm{i}\left\{\left(I_{+}-I_{-}\right) I_{z}\right. \\
& \left.\left.\left.+I_{z}\left(I_{+}-I_{-}\right)\right\} \sin \theta \sin 2 \varphi\right)\right] \tag{2}
\end{align*}
$$

where $e^{2} q Q / h$ is the nuclear quadrupole coupling constant and η is the asymmetry parameter, α is the chemical shift tensor. The conventional $X-, Y$-, and Z-axes are such that $\left|V_{X X}\right| \leqslant$ $\left|V_{Y Y}\right| \leqslant\left|V_{Z Z}\right|=e q$; then $0 \leqslant \eta \leqslant 1$. By using an EPR-NMR program which adopts the diagonalization algorithm for the matrix representation of the Hamiltonian instead of the perturbation method of Volkoff [16], we determined the nuclear quadrupole constant, the asymmetry parameter, and the principal directions of the EFG tensor.

The NMR spectra for ${ }^{87} \mathrm{Rb}$ in a $\mathrm{RbTiOAsO}_{4}$ crystal at room temperature are shown in figure 2. The zero point in figure 2 corresponds to the resonance frequency of 130.930 MHz for the ${ }^{87} \mathrm{Rb}$ nucleus. Figure 2 represents the central transition $(\pm 1 / 2 \leftrightarrow \pm 1 / 2)$ of ${ }^{87} \mathrm{Rb}$ NMR. The satellite lines for the ${ }^{87} \mathrm{Rb}(I=3 / 2)$ nucleus, which correspond to the transitions $(+3 / 2 \leftrightarrow+1 / 2)$ and $(-1 / 2 \leftrightarrow-3 / 2)$, are out of range. When the crystal is rotated about the crystallographic axis, crystallographically equivalent nuclei give rise to three lines: one central line and two satellite lines. Instead of the one central resonance line of the ${ }^{87} \mathrm{Rb}$ nucleus, four central resonance lines are obtained in the case of the $\mathrm{RbTiOAsO}_{4}$ crystal. This result points to the existence of two types of crystallographically inequivalent Rb nuclei, $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$. The four central resonance lines correspond to two resonances in the $\mathrm{Rb}(1)$ nucleus and two resonances in the $\mathrm{Rb}(2)$ nucleus, all of which are caused by magnetically inequivalent sites. Figure 3 shows the angular dependence of the second-order quadrupole shifts of the ${ }^{87} \mathrm{Rb}$ resonance line in a $\mathrm{RbTiOAsO}_{4}$ single crystal at room temperature. The dots correspond to the experimental values, and the full curves were obtained by fitting these data to symmetric second-rank EFG tensors. The rotation patterns indicate anisotropic EFG tensors. The $\mathrm{Rb}(1)$ nucleus shows a small deviation from the resonance frequency, but the $\mathrm{Rb}(2)$ nucleus has a largely deviation, as shown in figure 3. The deviations of these two groups, one smaller and the other larger, represent ${ }^{87} \mathrm{Rb}$ NMR transitions due to $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$, respectively.

On the basis of the angular dependence of the second-order quadrupole shift in the central transition of the ${ }^{87} \mathrm{Rb}$ NMR, two different Rb resonance groups, which had different magnitudes for the quadrupole coupling constant and the asymmetry parameter, were analysed. In the case of $\mathrm{RbTiOAsO}_{4}$, the maximum separation from the resonance frequency is about 600 MHz . Usually, the chemical shift is about $1-100 \mathrm{ppm}$ [17]. The anisotropic chemical shift which is comparable to the second-order quadrupolar shift of the ${ }^{87} \mathrm{Rb}$ central transition

Figure 3. Rotation patterns of the $\operatorname{Rb}(1)$ and the $\mathrm{Rb}(2)$ NMR measured in the $a b$ - and $b c$-planes at room temperature.
in a $\mathrm{RbTiOAsO}_{4}$ single crystal is very small. The anisotropic chemical shift in this case is negligibly small [18]. Therefore, we have neglected the anisotropic chemical shift. Even if the anisotropic chemical shift is not considered, the NMR parameter is the same. The quadrupole coupling constant and the asymmetry parameter obtained for $\mathrm{Rb}(1)$, with the smaller deviation, are $e^{2} q Q / h=19.26 \pm 0.03 \mathrm{MHz}$ and $\eta=0.59 \pm 0.02$. Those for $\mathrm{Rb}(2)$, with the larger deviation, are $e^{2} q Q / h=23.58 \pm 0.07 \mathrm{MHz}$ and $\eta=0.44 \pm 0.05$. Therefore, the EFG tensors of $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ are not axially symmetric; the rubidium ions are surrounded by nine distorted oxygen atoms. The directions of the principal EFG tensors for the $\mathrm{Rb}(1)$ and the $\mathrm{Rb}(2)$ ions are shown in table 2. Where, $R b_{A}(1)$ and $R b_{B}(1)$, as shown in figure 3, are caused by magnetically inequivalent $\mathrm{Rb}(1)$ nuclei that are chemically equivalent. Also, in figure $3, R b_{C}(2)$ and $R b_{D}(2)$ are split due to magnetically inequivalent $\mathrm{Rb}(2)$ nuclei that are also chemically equivalent. Here, μ_{a}, μ_{b}, and μ_{c} are the direction cosines relative to the crystallographic $a-, b$-, and c-axes of $\mathrm{RbTiOAsO}_{4}$, respectively. The directions of the principal EFG tensors for the Rb ions are represented with the Eulerian angles $\Phi=30.89^{\circ}$, $\Theta=79.31^{\circ}$, and $\Psi=45.05^{\circ}$ for $\mathrm{Rb}_{\mathrm{A}}(1) ; \Phi=44.15^{\circ}, \Theta=79.46^{\circ}$, and $\Psi=44.92^{\circ}$ for $R b_{B}(1) ; \Phi=12.90^{\circ}, \Theta=74.79^{\circ}$, and $\Psi=166.07^{\circ}$ for $\operatorname{Rb}_{C}(2) ; ~ \Phi=13.42^{\circ}, \Theta=74.97^{\circ}$, and $\Psi=14.34^{\circ}$ for $\mathrm{Rb}_{\mathrm{D}}(2)$. The NMR parameters for the $\mathrm{Rb}(1)$ and the $\mathrm{Rb}(2)$ atoms are different. The nearest-neighbour $\mathrm{Rb}(1)-\mathrm{O}$ bond lengths have an average of $3.053 \AA$ while the $\mathrm{Rb}(2)-\mathrm{O}$ bond lengths have an average of $3.029 \AA$. The $\mathrm{Rb}(2)-\mathrm{O}$ bond is rather shorter than the $\mathrm{Rb}(1)-\mathrm{O}$ bond lengths. Since the EFG is proportional to $1 / r^{3}$ [19] and the asymmetry parameter represents the anisotropy of the EFG tensor, the $\mathrm{Rb}(1)$ site is expected to have a smaller $e^{2} q Q / h$ and a larger η than the $\operatorname{Rb}(2)$ site.

5. Discussion and conclusions

The rotation patterns of the ${ }^{87} \mathrm{Rb}$ NMR in a $\mathrm{RbTiOAsO}_{4}$ single crystal grown by using a hightemperature solution growth method were investigated in two mutually perpendicular crystal planes. Only four central lines were observed for each direction of the magnetic field. These four ${ }^{87} \mathrm{Rb}$ central lines showed the angular dependences of second-order quadrupolar shifts. From these angular dependences, all the parameters could be determined, leading to different values for the quadrupole coupling constant and the asymmetry parameter. The EFG tensors of $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ are both non-axially symmetric, and the orientations of the principal axes

Table 2. Direction cosines of the $\mathrm{Rb}(1)$ and the $\mathrm{Rb}(2) \mathrm{EFG}$ tensors in $\mathrm{RbTiOAsO}_{4}$

	$V_{X X}$	$V_{Y Y}$	$V_{Z Z}$
$\mathrm{Rb}_{\mathrm{A}}(1)$			
μ_{a}	-0.67465	0.25087	0.69420
μ_{b}	-0.53884	0.47539	-0.69546
μ_{c}	0.50448	0.84325	0.18554
$\mathrm{Rb}_{\mathrm{B}}(1)$			
μ_{a}	-0.67770	0.24240	0.69423
μ_{b}	0.54664	-0.46540	0.69612
μ_{c}	0.49184	0.85126	0.18290
$\mathrm{Rb}_{\mathrm{C}}(2)$			
μ_{a}	-0.96021	0.15505	0.23226
μ_{b}	-0.17778	0.30194	-0.93660
μ_{c}	0.21539	0.94063	0.26235
$\mathrm{Rb}_{\mathrm{D}}(2)$			
μ_{a}	-0.95731	0.16239	0.23915
μ_{b}	0.18257	-0.30179	0.93573
μ_{c}	0.22413	0.93944	0.25925

of the EFG tensor do not coincide for the $\operatorname{Rb}(1)$ and the $\mathrm{Rb}(2)$ sites. There are two sets of crystallographically inequivalent Rb^{+}ions, $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$. Because $\mathrm{Rb}(2)$ is surrounded less symmetrically by nearer ligands than $\mathrm{Rb}(1)$, the quadrupole coupling constant of $\mathrm{Rb}(1)$ is smaller than that of $\operatorname{Rb}(2)$. The quadrupole coupling constant $e^{2} q Q / h=e Q\left(\partial E_{z} / \partial z\right) / h$ and asymmetry parameter $\eta=\left(\partial E_{x} / \partial x\right)-\left(\partial E_{y} / \partial y\right) /\left(\partial E_{z} / \partial z\right)$ for $\operatorname{Rb}(1)$ and $\operatorname{Rb}(2)$ can be calculated directly from the experimental data, but in order to obtain $e q=\left(\partial E_{z} / \partial z\right)$, one needs to know Q for the Rb nucleus. From these results, the components of the asymmetry parameter were found; the values for $\left|V_{X X}\right|,\left|V_{Y Y}\right|,\left|V_{Z Z}\right|$ are $1.26 \times 10^{21}, 4.88 \times 10^{21}, 6.14 \times 10^{21} \mathrm{~V} \mathrm{~m}^{-2}$ for $\mathrm{Rb}(1)$ and $2.10 \times 10^{21}, 5.41 \times 10^{21}, 7.51 \times 10^{21} \mathrm{~V} \mathrm{~m}^{-2}$ for $\mathrm{Rb}(2)$, respectively. We know that the $\mathrm{Rb}(2)$ ions surrounded by nine oxygen atoms have wider charge distributions than the $\mathrm{Rb}(1)$ ions surrounded by nine oxygen atoms. Thus, the quadrupole coupling constants and the asymmetry parameters of $\operatorname{Rb}(1)$ and $\mathrm{Rb}(2)$ reveal the configuration of ionic charges around $R b^{+}$. The $\mathrm{Rb}(1)$ ions surrounded by nine oxygen atoms are lower in symmetry than the $\mathrm{Rb}(2)$ ions while the $\mathrm{Rb}(2)$ ions surrounded by nine oxygen atoms show high symmetry. Therefore, the $\mathrm{Rb}(1)$ and the $\mathrm{Rb}(2)$ atoms surrounded by nine oxygen atoms can be clearly distinguished from the ${ }^{87} \mathrm{Rb}$ NMR results.

Acknowledgment

This work was supported by grant No R05-2001-000-00148-0 from the basic research programme of the Korea Science and Engineering Foundation.

References

[1] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 1271918
[2] Shur V Y and Rumyantsev E L 1999 Phys. Solid State 411681
[3] Rosenman G, Skliar A, Eger D, Oron M and Katz M 1998 Appl. Phys. Lett. 733650
[4] Hu A W, Thomas P A, Webjorn J and Loiacono G M 1996 J. Phys. D: Appl. Phys. 291681
[5] Karlsson H and Laurell F 1997 Appl. Phys. Lett. 713474
[6] Yang Y and Yoon C S 1999 Appl. Phys. Lett. 751164
[7] Kaminsky W, Thomas P A and Glazer A M 2002 Z. Kristallogr. 2171
[8] Thomas P A, Mayo S C and Watts B E 1992 Acta Crystallogr. B 48401
[9] Reid D T, Ebrahimzadeh M and Sibbett W 1995 J. Opt. Soc. Am. B 122168
[10] Cheng L T, Cheng L K and Bierlein J D 1993 Proc. SPIE 186343
[11] Chu D K T, Bierlein J D and Hunsperger R G 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39683
[12] Almgren J, Streltsov V A, Sobolev A N, Figgis B N and Albertsson J 1999 Acta Crystallogr. B 55712
[13] El Haidouri A, Durand L and Cot L 1990 Mater. Res. Bull. 251193
[14] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Oxford University Press)
[15] Cowan B 1997 Nuclear Magnetic Resonance and Relaxation (Cambridge: Cambridge University Press)
[16] Volkoff G M 1953 Can. J. Phys. 31361
[17] Lim A R, Jeong D Y, Kim J H and Hahn J H 2001 J. Phys.: Condens. Matter 132025
[18] Pole J A, Schneider W G and Bernstein H J 1959 High Resolution Nuclear Magnetic Resonance (New York: McGraw-Hill)
[19] Schumacher R T 1970 Introduction to Magnetic Resonance (New York: Benjamin)

[^0]: ${ }^{3}$ Author to whom any correspondence should be addressed.

